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Chapter 1

Chapters 1-5

1.1 2020-01-06 to 2020-01-17
Lectures [1, 6] have been excluded from these notes since Surya Banerjee was away.

1.2 2020-01-20
Roadmap

• Intro.
• Big picture of STAT 230 and STAT 231.
• Quiz Recap.
EXAMPLE 1.2.1: STAT 230
A fair die is rolled 60 times. What is the probability that 12 of them are sixes?
Solution. Let 𝑋 be the number of successes (sixes), then 𝑋 ∼ Binomial(60, 1/6).

P(𝑋 = 12) = (60
12) (1

6)
12

(1 − 1
6)

60−12
≈ 0.11

EXAMPLE 1.2.2: STAT 231
A die is rolled 60 times and 12 of them were sixes. What can we say about the “fairness” of the die?
Solution. We will solve this answer later.

• STAT 230: Population → Sample.
• STAT 231: Sample → Population.
• Think of STAT 231 as the “reverse” of STAT 230.
• Errors are inevitable.
• Data collection is extremely important.

Why do we summarize data?
(1) To identify the “model.”
(2) To extract important properties.

2
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We summarize our data into two categories:
(1) Numerical
(2) Graphical

Numerical Summaries
• Location: centre.
• Variability: “spread.”
• Skewness: right-tailed or left-tailed.
• Kurtosis: how frequent extreme observations are.

Location
• Sample mean ( ̄𝑦):

̄𝑦 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

• Sample median (𝑚̂):
– Odd 𝑛:

𝑚̂ = 𝑦(𝑛/2)

– Even 𝑛:
𝑚̂ = 1

2 (𝑦(⌊𝑛/2⌋) + 𝑦(⌈𝑛/2⌉))

• Sample mode: value of 𝑦 which appears in the sample with the highest frequency (not necessarily
unique).

The sample mean, median, and mode describe the “centre” of the distribution of variate values in a data set.
Since the median is less affected by a few extreme observations, it is a more robust measure of location.

Variability
• Sample variance (𝑠2):

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 = 1
𝑛 − 1

⎡⎢
⎣

𝑛
∑
𝑖=1

𝑦2
𝑖 − 1

𝑛 (
𝑛

∑
𝑖=1

𝑦𝑖)
2
⎤⎥
⎦

= ∑𝑛
𝑖=1 𝑦2

𝑖 − 𝑛 ̄𝑦2

𝑛 − 1

• Sample standard deviation (𝑠):
𝑠 =

√
𝑠2

• Range:
Range = 𝑦(𝑛) − 𝑦(1)

• IQR:
IQR = 𝑞(0.75) − 𝑞(0.25)

The sample variance and standard deviation measure the variability or spread of the variate values in a data
set. Since the interquartile range is less affected by a few extreme observations, it is a more robust measure
of variability.
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Shape
• Sample skewness (𝑔1):

𝑔1 =
1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)3

[ 1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)2]
3/2

• Sample kurtosis (𝑔2):

𝑔2 =
1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)4

[ 1
𝑛 ∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)2]
2

Measures of shape generally indicate how the data, in terms of a relative frequency histogram, differ from
the Normal bell-shaped curve. The sample skewness is a measure of (lack of) symmetry in the data. If the
relative frequency histogram of the data has a long right tail, then the sample skewness will be positive. The
sample kurtosis measures the heaviness of the tails and the peakedness of the data relative to the data that
are Normally distributed. If the sample kurtosis is greater than 3, then this indicates heavier tails (and a more
peaked centre) than data that are Normally distributed. For data that arise from a model with no tails, for
example the Uniform distribution, the sample kurtosis will be less than 3.

EXAMPLE 1.2.3
Suppose we have 20 observations and the following data is given.

• ̄𝑦 = 50
• 𝑠2 = 5000

Suppose one observation is unreliable, say 𝑦𝑖 = 60. Calculate the new mean.
Solution.

̄𝑦new = New Total
19

= Old Total − 60
19

= 50 × 20 − 60
19

= 940
19

≈ 49.47

Sample Quantiles and Percentiles
DEFINITION 1.2.4
Let {𝑦(1), … , 𝑦(𝑛)} where 𝑦(1) ⩽ ⋯ 𝑦(𝑛) be the order statistic for the data set {𝑦1, … , 𝑦𝑛}. For 0 < 𝑝 < 1,
the 𝑝th sample quantile (also called the 100𝑝th sample percentile), is a value, call it 𝑞(𝑝), determined as
follows:

• Let 𝑚 = (𝑛 + 1)𝑝 where 𝑛 is the sample size.
• If 𝑚 is an integer and 1 ⩽ 𝑚 ⩽ 𝑛, then 𝑞(𝑝) = 𝑦(𝑚).
• If 𝑚 is not an integer, but 1 < 𝑚 < 𝑛, then we determine the closest integer 𝑗 such that 𝑗 < 𝑚 <

𝑗 + 1 and then 𝑞(𝑝) = 1
2 [𝑦(𝑗) + 𝑦(𝑗+1)].

DEFINITION 1.2.5
The quantiles 𝑞(0.25), 𝑞(0.5) and 𝑞(0.75) are called the lower (first) quartile, the median, and the
upper (third) quartile respectively.
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DEFINITION 1.2.6
The interquartile range is IQR = 𝑞(0.75) − 𝑞(0.25).

DEFINITION 1.2.7
The five number summary of a data set consist of the smallest observation, the lower quartile, the
median, the upper quartile, and the largest value, that is, the five values: 𝑦(1), 𝑞(0.25), 𝑞(0.5) =
𝑚̂, 𝑞(0.75), 𝑦(𝑛).

Graphical Summaries
• Frequency histogram.
• Empirical cumulative distribution function.
• Box plots.
• Scatter plot.
• Run charts.
DEFINITION 1.2.8
For a data set {𝑦1, … , 𝑦𝑛}, the empirical cumulative distribution function (e.c.d.f) is defined by

̂𝐹 (𝑦) = number of values in {𝑦1, 𝑦2, … , 𝑦𝑛} which are ⩽ 𝑦
𝑛

for all 𝑦 ∈ R. The e.c.d.f is an estimate, based on the data, of the population cumulative distribution
function.

1.3 2020-01-22
STAT 231: Characteristics of the population are unknown.

Data Summary
• Extract important properties.
• Fit the right model.

Disappearance of the 400 hitter
• Batting average ?= proportion of successes.
• Battling champion = person with the highest batting average.
• Before 1950: 3 champions ⩾ 400.
• Since 1953: 0.

Question: Why?

Arguments
• Absolute.
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• Relative.
• Better pitchers: Relief.
• Better fielding: Glove sizes.
• Better managing.

All these arguments are incorrect.
The average points of the generic batter is roughly the same over time, but the standard deviation decreases
by a lot. Thus, we have a tighter Gaussian distribution for the model today compared to back then since the
average player is pretty good (before there was huge variability).
“The median isn’t the message”—Stephen Jay Gould

Intro to Statistical Models
DEFINITION 1.3.1
A statistical model is a specification of the distribution from which the data set is drawn, where the
attribute of interest is a parameter of that distribution.

EXAMPLE 1.3.2
A coin is tossed 200 times with 𝑦 = 110 heads. What can we say about the “fairness” of the coin?
The attribute of interest is

P(𝐻) = probability of heads = 𝜃 = unknown

Based on our sample, we try to “estimate” 𝜃. Let 𝑌 be the number of heads when we toss a coin 200
times, then our statistical model is: 𝑌 ∼ Binomial(200, 𝜃) with 𝑦 = 110.

EXAMPLE 1.3.3
How good are Canadians on Jeopardy? Let {𝑦1, … , 𝑦10} be our data set where 𝑦𝑖 is the number of
shows that the 𝑖th Canadian appeared on.

𝜃 = P(Canadian wins Jeopardy)

Is ̂𝜃 ≫ 1/3?
{𝑦1 = 2, 𝑦2 = 3, 𝑦3 = 1, 𝑦4 = 5}

• 𝑦1 = 𝜃(1 − 𝜃)
• 𝑦4 = 𝜃4(1 − 𝜃)

Then, our statistical model is 𝑌𝑖 ∼ Geometric(1 − 𝜃) for 𝑖 = 1, … , 10.

Objective
The average salary of a UW co-op student is $10000 per term. Is this claim true? Suppose {𝑦1, … , 𝑦100} is
given and 𝑌𝑖 ∼ 𝒩(𝜇, 𝜎2) where each 𝑖 ∈ [1, 100] are independent. We will answer this question later in the
course.

1.4 2020-01-24
Roadmap

• Statistical models.



CHAPTER 1. CHAPTERS 1-5 7

• Notations and Definitions.
• Likelihood function for discrete data.
• MLE (Maximum Likelihood Estimate).
EXAMPLE 1.4.1
A coin is tossed 100 times with 𝑦 = 40 heads. What can we say about the fairness of the coin?

Step 1
Identify the attribute of interest.

𝜃 = 𝑃(H)
= population proportion of heads
= population parameter
= unknown constant

Step 2
Estimate 𝜃 using your data. Based on your data set, what is the “likely” value of 𝜃?

̂𝜃(𝑦1, … , 𝑦𝑛) = number that can be calculated using our data set
= point estimate of 𝜃

Step 3
Given ̂𝜃, is 𝜃 = 0.5 “reasonable”?

Notation
• Population parameters are denoted with Greek letter such as: 𝜃, 𝜇, 𝜎2, 𝑛̃.
• Data sets are denoted with English letter such as: 𝑦, 𝑦1, … , 𝑦𝑛 when the data set is unknown or ̂𝜃, ̂𝜇 if

your data set is known.
• Random variables are denoted with upper case English letters such as: 𝑌1, … , 𝑌𝑛, 𝑌 , 𝑍.
• 𝑦 = 40 heads where 𝑦 is an outcome of a Binomial experiment:

𝑌 ∼ Binomial(100, 𝜃)

EXAMPLE 1.4.2
A sample of 500 people are picked up and 200 of them said that they will vote for Trump. Based on
this data will Trump win in 2020?
Solution.
Let 𝜃 = proportion of the population that vote for Trump. Our model is:

𝑌 ∼ Binomial(500, 𝜃)

EXAMPLE 1.4.3
Suppose we are interested in the average number of texts a UW math student receives every half hour
and 𝑛 students were interviewed.
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Let 𝜇 be the population average of texts received by a UW student.

𝑌𝑖 ∼ Poisson(𝜇)

for 𝑖 = 1, … , 𝑛.

DEFINITION 1.4.4
A point estimate of a parameter is the value of a function of the observed data 𝑦1, … , 𝑦𝑛 and other
known quantities such as the sample size 𝑛. We use ̂𝜃 to denote an estimate of the parameter 𝜃.

DEFINITION 1.4.5
The likelihood function for 𝜃 is defined as

ℒ(𝜃) = ℒ(𝜃; 𝒚) = P(𝒀 = 𝒚; 𝜃)

for 𝜃 ∈ 𝛺 where the parameter space 𝛺 is the set of all possible values for 𝜃.

DEFINITION 1.4.6
The value of 𝜃 which maximizes ℒ(𝜃) for given data 𝒚 is called themaximum likelihood estimate (m.l.
estimate) of 𝜃. It is the value of 𝜃 which maximizes the probability of observing the data 𝒚. This value
is denoted ̂𝜃.

EXAMPLE 1.4.7
A coin is tossed 100 times, and we get 𝑦 = 40 heads. Let 𝜃 be the probability of heads. Find the MLE
of 𝜃.
Solution.

ℒ(𝜃) = P(𝑌 = 40) = (100
40 )𝜃40(1 − 𝜃)60

ℓ(𝜃) = ln [(100
40 )] + 40 ln(𝜃) + 60 ln(1 − 𝜃)

𝑑ℓ
𝑑𝜃 = 40

𝜃 − 60
1 − 𝜃 ∶= 0

⟹ ̂𝜃 = 0.4

1.5 2020-01-27
Roadmap

• Statistical Models.
• Likelihood and the MLE for discrete:

– Binomial.
– Poisson.
– Geometric.

• Invariance property of the MLE.
• Relative likelihood function.
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DEFINITION 1.5.1
The relative likelihood function is defined as

𝑅(𝜃) = ℒ(𝜃)
ℒ( ̂𝜃)

for 𝜃 ∈ 𝛺. Note that 0 ⩽ 𝑅(𝜃) ⩽ 1 for all 𝜃 ∈ 𝛺.

DEFINITION 1.5.2
The log likelihood function is defined as

ℓ(𝜃) = ln[ℒ(𝜃)]

for 𝜃 ∈ 𝛺.

† Why does maximizing ℓ(𝜃) also maximize ℒ(𝜃)? Answer: ln(⋅) is an increasing function, in fact it will work
for all increasing functions.
Let 𝑔 ∶ R → R be a strictly increasing monotonic function; that is 𝑡 > 𝑠 ⟺ 𝑔(𝑡) > 𝑔(𝑠). Suppose 𝑓( ̂𝑥) is
maximum for ̂𝑥. That means 𝑓( ̂𝑥) > 𝑓(𝑥) for all 𝑥. Thus,

𝑔(𝑓( ̂𝑥)) > 𝑔(𝑓(𝑥))

Let 𝑡 = 𝑓( ̂𝑥) and 𝑠 = 𝑓(𝑥). The result now follows.
PROPOSITION 1.5.3
If 𝑌 ∼ Binomial(𝑛, 𝜃) with 𝑦 successes, then the maximum likelihood estimate for 𝜃 is given by

̂𝜃 = 𝑦
𝑛

Proof of Proposition 1.5.3

If 𝑦 = 0, then
ℒ(𝜃) = 𝑃(𝑌 = 0; 𝜃) = (𝑛

0)𝜃0(1 − 𝜃)𝑛 = (1 − 𝜃)𝑛−0

for 0 ⩽ 𝜃 ⩽ 1. ℒ(𝜃) is a decreasing function for 𝜃 ∈ [0, 1] and its maximum on the interval [0, 1] occurs
at the endpoint 𝜃 = 0 and so ̂𝜃 = 0 = 0

𝑛 .
If 𝑦 = 𝑛, then

ℒ(𝜃) = 𝑃(𝑌 = 𝑛; 𝜃) = (𝑛
𝑛)𝜃𝑛(1 − 𝜃)𝑛−𝑛 = 𝜃𝑛

for 0 ⩽ 𝜃 ⩽ 1. ℒ(𝜃) is an increasing function for 𝜃 ∈ [0, 1] and its maximum on the interval [0, 1] occurs
at the endpoint 𝜃 = 1 and so ̂𝜃 = 1 = 𝑛

𝑛 .
If 𝑦 ≠ 0 and 𝑦 ≠ 𝑛, then

ℒ(𝜃) = 𝑃(𝑌 = 𝑦; 𝜃) = (𝑛
𝑦)𝜃𝑦(1 − 𝜃)𝑛−𝑦

for 0 ⩽ 𝜃 ⩽ 1. Then,
ℓ(𝜃) = ln [(𝑛

𝑦)] + 𝑦 ln(𝜃) + (𝑛 − 𝑦) ln(1 − 𝜃)

for 0 < 𝜃 < 1.
𝑑ℓ
𝑑𝜃 = 𝑦

𝜃 − 𝑛 − 𝑦
1 − 𝜃 = 𝑦 − 𝑛𝜃

𝜃(1 − 𝜃) ∶= 0
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⟹ ̂𝜃 = 𝑦
𝑛

1.6 2020-01-29
Roadmap

• 5 min recap.
• Likelihood and the MLE for continuous distributions.
• Invariance property of the MLE.
• Parameter, Estimate, and Estimator.
DEFINITION 1.6.1
In many applications, the data 𝒀 = (𝑌1, … , 𝑌𝑛) are independent and identically distributed (iid) ran-
dom variables each with probability function 𝑓(𝑦; 𝜃) for 𝜃 ∈ 𝛺. We refer to 𝒀 as a random sample from
the distribution 𝑓(𝑦; 𝜃). In this case, the observed data are 𝒚 = (𝑦1, … , 𝑦𝑛) and

ℒ(𝜃) = ℒ(𝜃; 𝒚) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝜃)

for 𝜃 ∈ 𝛺. Recall that if 𝑌1, … , 𝑌𝑛 are independent random variables, then their joint probability
function is the product of their individual probability functions.

PROPOSITION 1.6.2
Suppose the data 𝒚 = (𝑦1, … , 𝑦𝑛) is independently drawn from a Poisson(𝜃) distribution, where 𝜃 is un-
known. The maximum likelihood estimate for 𝜃 is given by

̂𝜃 = ̄𝑦

Proof of Proposition 1.6.2

The likelihood function is

ℒ(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝜃)

=
𝑛

∏
𝑖=1

𝜃𝑦𝑖𝑒−𝜃

𝑦𝑖!

= (
𝑛

∏
𝑖=1

1
𝑦𝑖!

) 𝜃
𝑛
∑
𝑖=1

𝑦𝑖𝑒−𝑛𝜃

or more simply
ℒ(𝜃) = 𝜃𝑛 ̄𝑦𝑒−𝑛𝜃

for 𝜃 ⩾ 0. The log likelihood function is
ℓ(𝜃) = 𝑛 [ ̄𝑦 ln(𝜃) − 𝜃]

for 𝜃 > 0.
𝑑ℓ
𝑑𝜃 = 𝑛 ( ̄𝑦

𝜃 − 1) = 𝑛
𝜃 ( ̄𝑦 − 𝜃) ∶= 0

⟹ ̂𝜃 = ̄𝑦
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EXAMPLE 1.6.3
• 𝜇 = average time between two volcanic eruptions
• 𝒚 = (𝑦1, … , 𝑦𝑛)
• 𝑦𝑖 = waiting time for the 𝑖th eruption

Model: 𝑌𝑖 ∼ Exponential(𝜃) iid

DEFINITION 1.6.4
If 𝒚 = (𝑦1, … , 𝑦𝑛) are the observed values of a random sample from a distribution with probability
distribution function 𝑓(𝑦; 𝜃), then the likelihood function is defined as

ℒ(𝜃) = ℒ(𝜃; 𝒚) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝜃)

for 𝜃 ∈ 𝛺.

PROPOSITION 1.6.5
Suppose the data 𝒚 = (𝑦1, … , 𝑦𝑛) is independently drawn from a Exponential(𝜃) distribution, where 𝜃 is
unknown. The maximum likelihood estimate for 𝜃 is given by

̂𝜃 = ̄𝑦

Proof of Proposition 1.6.5

The likelihood function is

ℒ(𝜃) =
𝑛

∏
𝑖=1

1
𝜃 𝑒−𝑦𝑖/𝜃

= 1
𝜃𝑛 exp(−

𝑛
∑
𝑖=1

𝑦𝑖/𝜃)

= 𝜃−𝑛𝑒−𝑛 ̄𝑦/𝜃

for 𝜃 > 0. The log likelihood function is

ℓ(𝜃) = −𝑛 (ln(𝜃) + ̄𝑦
𝜃 )

for 𝜃 > 0.
𝑑ℓ
𝑑𝜃 = −𝑛 (1

𝜃 − ̄𝑦
𝜃2 ) = 𝑛

𝜃2 ( ̄𝑦 − 𝜃) ∶= 0

⟹ ̂𝜃 = ̄𝑦

EXAMPLE 1.6.6
• 𝜇 = average score in STAT 231
• 𝜎2 = variance in STAT 231 scores
• 𝒚 = (𝑦1, … , 𝑦𝑛)
• 𝑦𝑖 = STAT 231 score of the 𝑖th student

Model: 𝑌𝑖 ∼ 𝒩(𝜇, 𝜎2) iid
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PROPOSITION 1.6.7

Suppose the data 𝒚 = (𝑦1, … , 𝑦𝑛) is independently drawn from a 𝒩(𝜇, 𝜎2) distribution, where 𝜇 and 𝜎
are unknown. The maximum likelihood estimate for the pair (𝜇, 𝜎2) is given by

̂𝜇 = ̄𝑦,

𝜎̂2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

THEOREM 1.6.8

If ̂𝜽 = ( ̂𝜃1, … , ̂𝜃𝑘) is the maximum likelihood estimate of 𝜽 = (𝜃1, … , 𝜃𝑘), then 𝑔( ̂𝜽) is the maximum
likelihood estimate of 𝑔(𝜽).

EXAMPLE 1.6.9
Suppose 𝑌1, … , 𝑌25 ∼ Poisson(𝜇) with ̄𝑦 = 5. Find the MLE for P(𝑌 = 1).
Solution.

P(𝑌 = 1) = 𝑒−𝜇𝜇𝑦

𝑦! = 𝑒−551

1! = 5
𝑒5

1.7 2020-01-31
Roadmap

• 5 min recap.
• Likelihood function for multinomial.
• Testing for the model:

– Observed vs Expected frequencies.
• Likelihood function and the MLE for the uniform distribution.
EXAMPLE 1.7.1
The MLE of 𝜃 for

𝑓(𝑦; 𝜃) = 1
𝜃 𝑒−𝑦/𝜃

is ̂𝜃 = ̄𝑦. Find the corresponding MLE for 𝜆 for

𝑓(𝑦; 𝜆) = 𝜆𝑒−𝜆𝑦.

Solution. Since 𝜆 = 1
𝜃 , we have

̂𝜃 = ̄𝑦 ⟹ 1
𝜆 = ̄𝑦

by the invariance property. Thus, the MLE for 𝜆 is

𝜆̂ = 1
̄𝑦 .
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EXAMPLE 1.7.2
Suppose 4 people (𝐴, 𝐵, 𝐶, 𝐷) run a 100 metre race every week. Let 𝜃𝑖 be the probability person 𝑖 wins
a race for 𝑖 ∈ {𝐴, 𝐵, 𝐶, 𝐷}. Suppose also the following data is given to us.

• 𝑛 = 20
• 𝑦𝐴 = 8
• 𝑦𝐵 = 6
• 𝑦𝐶 = 4
• 𝑦𝐷 = 2

Model: 𝑌 ∼ Multinomial(𝑛, 𝜃𝐴, … , 𝜃𝐷).
Questions:
(a) What is the likelihood function?
(b) What are the MLEs?

The likelihood function is given by

ℒ(𝜃𝐴, … , 𝜃𝐷) = 20!
8!6!4!2!𝜃

8
𝐴𝜃6

𝐵𝜃4
𝐶𝜃2

𝐷

Intuitively, the MLEs are given by
• ̂𝜃𝐴 = 8

20
• ̂𝜃𝐵 = 6

20
• ̂𝜃𝐶 = 4

20
• ̂𝜃𝐷 = 2

20

The Multinomial joint probability function is

𝑓(𝑦1, … , 𝑦𝑘; 𝜽) = 𝑛!
𝑦1! ⋯ 𝑦𝑘!

𝑘
∏
𝑖=1

𝜃𝑦𝑖
𝑖

for 𝑦𝑖 = 0, 1, … where
𝑘

∑
𝑖=1

𝑦𝑖 = 𝑛. The likelihood function for 𝜽 = (𝜃1, … , 𝜃𝑘) based on data 𝑦1, … , 𝑦𝑘 is given
by

ℒ(𝜽) = ℒ(𝜃1, … , 𝜃𝑘) = 𝑛!
𝑦1! ⋯ 𝑦𝑘!

𝑘
∏
𝑖=1

𝜃𝑦𝑖
𝑖

or more simply

ℒ(𝜽) =
𝑘

∏
𝑖=1

𝜃𝑦𝑖
𝑖

The log likelihood is

ℓ(𝜽) =
𝑘

∑
𝑖=1

[𝑦𝑖 ln(𝜃𝑖)]

If 𝑦𝑖 represents the number of times outcome 𝑖 occurred in the 𝑛 “trials” for 𝑖 = 1, … , 𝑘, then the following
result holds.

PROPOSITION 1.7.3
Suppose 𝑌 ∼ Multinomial(𝑛, 𝜃1, … , 𝜃𝑘), then the MLE for 𝜽 = (𝜃1, … , 𝜃𝑘) is

̂𝜃𝑖 = 𝑦𝑖
𝑛

for 𝑖 = 1, … , 𝑘.



CHAPTER 1. CHAPTERS 1-5 14

Proof of Proposition 1.7.3

Use Lagrange multiplier method for ℓ(𝜽) satisfying the linear constraint
𝑘

∑
𝑖=1

𝜃𝑖 = 1.

EXAMPLE 1.7.4
Let 𝑌 be a discrete random variable taking values in {0, 1, 2, 3} and

𝑃(𝑌 = 0) = 𝜃3, 𝑃 (𝑌 = 1) = 3𝜃(1 − 𝜃)2, 𝑃 (𝑌 = 2) = 3𝜃2(1 − 𝜃), 𝑃 (𝑌 = 3) = (1 − 𝜃)3

where 𝜃 is an unknown parameter, with 0 < 𝜃 < 1. We make a table of 80 independent observations
from the distribution above.

𝑌 Observed Frequency
0 10
1 30
2 30
3 10

(a) Determine the likelihood function, ℒ(𝜃).
Solution.

ℒ(𝜃) = (𝜃3)10 [3𝜃(1 − 𝜃)2]30 [3𝜃2(1 − 𝜃)]30 [(1 − 𝜃)3]10

= 330330𝜃30𝜃30𝜃60(1 − 𝜃)60(1 − 𝜃)30(1 − 𝜃)30

= 330330𝜃120(1 − 𝜃)120

or more simply
ℒ(𝜃) = 𝜃120(1 − 𝜃)120

(b) Determine the log likelihood function, ℓ(𝜃).
Solution.

ℓ(𝜃) = 120 ln(𝜃) + 120 ln(1 − 𝜃)
or more simply

ℓ(𝜃) = ln(𝜃) + ln(1 − 𝜃)
(c) Using the function ℓ(𝜃) in (b) in order to derive the maximum likelihood estimate of 𝜃.
Solution.

𝑑ℓ
𝑑𝜃 = 1

𝜃 − 1
1 − 𝜃 = 1 − 2𝜃

𝜃(1 − 𝜃) ∶= 0

⟹ ̂𝜃 = 1
2 = 0.5

EXAMPLE 1.7.5: Using the likelihood functions to test models

Suppose 𝑊1, … , 𝑊𝑛 are iid. We collect data 𝒘 = (𝑤1, … , 𝑤𝑛).
Model: 𝑊𝑖 ∼ Poisson(𝜃)

𝑊 Observed Frequency Expected Frequency
0 𝑦0 𝑒1
1 𝑦1 𝑒2
2 𝑦2 𝑒3
3 𝑦3 𝑒4
4 𝑦4 𝑒5

⩾ 5 𝑦5 𝑒6
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To calculate the expected 𝑒𝑖’s we use the formula

𝑒𝑖 = 𝑛 ⋅ 𝑝𝑖

where
𝑝𝑖 = 𝑃(𝑌 = 𝑖).

for 𝑖 ∈ [0, 4] where 𝑛 is the total number of observations (observed frequencies summed). For example,
𝑒𝑖 would be the following.

𝑒𝑖 = 𝑛 ⋅ (𝑒− ̂𝜃 ⋅ ̂𝜃𝑖

𝑖! )

for 𝑗 ∈ [0, 4]. Note that ̂𝜃 = ̄𝑦. To estimate 𝑒5, we write

𝑒5 = 𝑛 ⋅ 𝑃(𝑌 ⩾ 5) = 𝑛 ⋅ (1 −
4

∑
𝑖=0

𝑃(𝑌 = 𝑖))

Then, we compare the observed frequencies to the expected frequencies.

1.8 2020-02-03
Roadmap:

• Review for the midterm
• Likelihood and the MLE for Uniform distribution
EXAMPLE 1.8.1
The average number of typos in an academic journal. A random sample of 100 pages are taken. Let
𝑦1, … , 𝑦100 be the observed data where 𝑦𝑖 is the number of typos in page 𝑖.

EXAMPLE 1.8.2
Average score in STAT 231 and whether STAT 231 scores are correlated with STAT 230 scores. Let
(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be the observed data where

• 𝑥𝑖 = STAT 230 score of the 𝑖th student
• 𝑦𝑖 = STAT 231 score of the 𝑖th student

Step 1: Identify the population, the parameter of interest, the type of study, variates, attributes (function of
the variates), etc.
Step 2: Collect data

• Observational: None of the variables are controlled
• Experimental: Some variables are under the control of the person doing the experiment

Types of problems
• Estimation: We are trying to estimate a population attribute
• Hypothesis testing: Testing a claim made about the population
• Prediction: Predict the “future” value of a variate

Step 3: Summarize data (to identify the model)
• Numerical
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• Graphical
• Test whether the model is appropriate

– Compare the CDF to the ECDF
– Compare the theoretical properties
– Compare the observed vs expected frequencies

Step 4: Do the statistical analysis based on your final model
• Parameter: Unknown constant, e.g. 𝜃 = population mean
• Estimate: A number that can be computed from the data set, e.g. ̂𝜃 = (sample mean)
• Estimator: The random variable from which ̂𝜃 is drawn, denoted ̃𝜃.

Likelihood function
ℒ(𝜃) =

𝑛
∏
𝑖=1

𝑓(𝑦𝑖; 𝜃)

where 𝑓 = distribution/density function.
ℓ(𝜃) = ln [ℒ(𝜃)]

̂𝜃 is the MLE of ̂𝜃 that maximizes ℒ(𝜃)
Measures of Association

• Data set: (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)
– 𝑥𝑖 = number of bears you drink per week
– 𝑦𝑖 = STAT 231 score in MT 1

If 𝑥𝑖 > ̄𝑥 and 𝑦𝑖 < ̄𝑦, then
(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦) < 0

Sample Correlation

𝑟𝑥𝑦 =

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2
= 𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦

Note that we always have −1 ⩽ 𝑟𝑥𝑦 ⩽ 1.
• If |𝑟𝑥𝑦| ≈ 1, then there is evidence of a strong linear relationship
• If |𝑟𝑥𝑦| ≈ 0, then there is no evidence of a linear relationship

Note that
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦) =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛 ̄𝑥 ̄𝑦

=
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)𝑦𝑖

Rich Poor
Smoker 20⏟

𝑛11

80⏟
𝑛12

Non-smoker 50⏟
𝑛21

50⏟
𝑛22
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Relative Risk =
20

20+80
50

50+50

=
𝑛11

𝑛11+𝑛12
𝑛21

𝑛21+𝑛22

1.9 2020-02-05
Roadmap:

• Two examples
– Likelihood and the MLE for Uniform(0, 𝜃)
– Discrete example

• PPDAC
– Example and definitions

EXAMPLE 1.9.1
𝑌1, … , 𝑌𝑛 are iid random variables with Uniform(0, 𝜃) where 𝜃 = unknown parameter (attribute) of
interest.

• Data set: (𝑦1, … , 𝑦𝑛) where 𝑦𝑖 > 0 for each 𝑖 ∈ [1, 𝑛]
What is the MLE for 𝜃.
Solution.

𝑓(𝑦𝑖; 𝜃) = density function

𝑓(𝑦𝑖; 𝜃) = {
1
𝜃 0 ⩽ 𝑦𝑖 ⩽ 𝜃 ∀𝑖 ∈ [1, 𝑛]
0 otherwise

Therefore, the likelihood function is

ℒ(𝜃) = {
1

𝜃𝑛 0 ⩽ 𝑦𝑖 ⩽ 𝜃 ∀𝑖 ∈ [1, 𝑛]
0 otherwise

Note that 0 ⩽ 𝑦𝑖 ⩽ 𝜃 ∀𝑖 ∈ [1, 𝑛] ⟺ 𝜃 > max{𝑦1, … , 𝑦𝑛}, thus

ℒ(𝜃) = {
1

𝜃𝑛 𝜃 > max{𝑦1, … , 𝑦𝑛}
0 otherwise

Thus, the MLE is
̂𝜃 = max(𝑦1, … , 𝑦𝑛)

EXAMPLE 1.9.2
• Students come out of a classroom with equal probability
• There are 𝑁 students in the class identified as {1, … , 𝑁}, where 𝑁 is unknown
• We observe 3 students come out (1, 2, 7)

What is ̂𝑁 given your data?
Solution.

ℒ(𝑁; (1, 2, 7)) = {0 𝑁 < 7
(𝑁

3 ) 𝑁 ⩾ 7
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Given this likelihood,
̂𝑁 = 7

can be thought of as a discrete version of TODO

PPDAC A step-by-step, algorithmic approach to a statistical question.
• P: Problem
• P: Plan
• D: Data
• A: Analysis
• C: Conclusion
EXAMPLE 1.9.3
We are interested in the attitude of Canadian residents to climate change (whether or not climate
change is the number one issue facing the world).
The area of Kitchener-Waterloo and Wellington County were selected and 200 people were randomly
selected and interviewed.
126 of them agreed that climate change is the number one issue.

Problem
• What question are we trying to answer?
• Types of problems:

– Descriptive: Estimating attributes of the population
– Causative: Check whether there is a relationship between 𝑥 and 𝑦
– Predictive: Predicting (forecasting) future values of a variate

• Target population: The population of interest
– All Canadian residents

• Variate: The property of the unit of the population we are interested in

𝑦𝑖 = {0 climate change is not the number one issue
1 otherwise

• Attribute: A function of the variate
– 𝜃 = proportion of Canadians who believe climate change is the number one issue

Plan
• Study population: The population from which the sample is drawn

– The study population is usually a subset of the target population, but does not have to be, e.g.
medical tests on mice.

1.10 2020-02-07
Roadmap:

• PPDAC example
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• Interval estimation
– Intervals using the likelihood function
– Confidence intervals

PPDAC
• Problem
• Plan
• Data
• Analysis
• Conclusion

Problem
• What kind of study is this?

– Observational
– Experimental

• What kind of problem is this?
– Descriptive
– Causative
– Predictive

• What is the target population?
– Target population: Population of interest

• What are the variates and attributes of interest?
– Attribute = function of the variate of interest
– 𝜃 = proportion of Canadians who believe climate change is the number one issue

• What is the study population?
– Study population: The act of observing from which the sample is drawn

• What is the sampling protocol?
– How is the sample collected?

• What could be a source of study error?
• What could be a source of sampling error?

Analysis
Data: Try to avoid bias where bias is systematic error.
Blind study: Medical tests

• Control group → Placebo (sugar pill)
• Experimental group → Actual drug
• The patient does not know.

Double blind study: the doctors do not know
Types of errors
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• Study errors: the difference in the value of the attribute between the target population and the study
population

– 𝜙 = proportion of people in Kitchener-Waterloo area who believe climate change is the number
one issue: 𝜃 − 𝜙

• Sampling errors: the difference in value of the attribute between the study population and the sample:
𝜙 − ̂𝜋 where ̂𝜋 = sample proportion

• Measurement errors: the value of the variate vs what is actually recorded in the data
Conclusion: Non-mathematical discussion of the final result
Interval estimation
Objective:

• To find the “reasonable” values of 𝜃, given by data set
• To quantify the “reasonableness” of your constructed interval

Method 1: Through the likelihood function (likelihood interval)
DEFINITION 1.10.1
The 100𝑝% likelihood interval where 𝑝 ∈ [0, 1], is given by

{𝜃 ∶ 𝑅(𝜃) ⩾ 𝑝}

where 𝑅(𝜃) = relative likelihood function.

EXAMPLE 1.10.2
Find the 10% likelihood interval given the figure below.

Guidelines for Interpreting Likelihood Intervals
Values of 𝜃 inside a 50% likelihood interval are very plausible in light of the observed data.

Values of 𝜃 inside a 10% likelihood interval are plausible in light of the observed data.
Values of 𝜃 outside a 10% likelihood interval are implausible in light of the observed data.

Values of 𝜃 outside a 1% likelihood interval are very implausible in light of the observed data.

Clicker Question 1: THE MLE ̂𝜃 is in every likelihood interval for all 𝑝 ∈ [0, 1].
(a) True
(b) False



CHAPTER 1. CHAPTERS 1-5 21

Clicker Question 2: If 𝜃 is in the 𝑝% likelihood interval, it has to be in the 𝑞% likelihood interval if 𝑞 > 𝑝.
(a) True
(b) False

1.11 2020-02-10
Roadmap:

• Interval Estimation
– Likelihood Estimation
– Confidence Intervals: Coverage probabilities, Pivotal Quantities

EXAMPLE 1.11.1
The approval rating of Trump is 49% (49% is the most “likely” value of 𝜃) where 𝜃 = population approval
rating.

• What is the “Margin of Error”?
– How does one calculate it?

Setup 𝑌1, … , 𝑌𝑛 are iid random variables with distribution (density) 𝑓(𝑦; 𝜃)where 𝜃 = unknown attribute.
Objective: Based on our data {𝑦1, … , 𝑦𝑛}, we would construct an interval [𝑎, 𝑏]

𝑎(𝑦1, … , 𝑦𝑛), 𝑏(𝑦1, … , 𝑦𝑛)

which are the “reasonable” values of 𝜃.
Method 1: Through the relative likelihood function.
Intuition: 𝜃 is “reasonable” of ℒ(𝜃) is “close” to ℒ( ̂𝜃), where 𝜃 = MLE.

DEFINITION 1.11.2
A 100𝑝% likelihood interval for 𝜃 where 𝑝 ∈ [0, 1]

{𝜃 ∶ 𝑅(𝜃) ⩾ 𝑝}

Take 𝑝 = 0.5, we get that 𝑅(𝜃) ⩾ 0.5, so

⟹ ℒ(𝜃) ⩾ 0.5ℒ( ̂𝜃)

The value of the likelihood at 𝜃 is at least 50% of the value of the likelihood evaluated at the MLE.
Convention

• 𝑅(𝜃) ⩾ 0.5 ⟹ 𝜃 is very plausible
• 0.1 ⩽ 𝑅(𝜃) < 0.5 ⟹ 𝜃 is plausible
• 0.01 ⩽ 𝑅(𝜃) < 0.1 ⟹ 𝜃 is implausible
• 𝑅(𝜃) < 0.01 ⟹ 𝜃 is very implausible
EXAMPLE 1.11.3
A coin is tossed 200 times and we observe 120 heads. Let 𝜃 = 𝑃(H). Is 𝜃 = 0.5 plausible?
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Solution. Find the 10% likelihood interval for 𝜃.

ℒ(𝜃) = (200
120)𝜃120(1 − 𝜃)80

We are given that ̂𝜃 = 0.6.
{𝜃 ∶ 𝜃120(1 − 𝜃)80

0.6120(0.4)80 ⩾ 0.1}

Thus,
𝑅(𝜃) = 𝜃120(1 − 𝜃)80

0.6120(0.4)80

Is 𝜃 = 0.5 plausible? Plug in 𝜃 = 0.5 and check if 𝑅(0.5) ⩾ 0.1.

EXAMPLE 1.11.4
Two Binomial experiments.

• 𝑛1 = 1000, 𝑦1 = 200
• 𝑛2 = 100, 𝑦2 = 20
• 𝑦 = number of successes
• 𝑛 = number of trials

Which 10% likelihood interval is wider?
Solution. We have ̂𝜃 = 0.2. 𝑛 = 100 yields a wider interval.

Method 2: Confidence intervals.
Setup: There is a pre-specified probability (coverage probability), say 95% or 99% for example.
Objective: Based on your data, we want to estimate the (random) interval which would contain 𝜃 with that
probability.

EXAMPLE 1.11.5
The STAT 231 scores of UW Math students is normally distributed independently

𝑌𝑖 ∼ 𝑁(𝜇, 64)

A sample of 25 students are collected
̄𝑦 = 75

Find the 95% confidence interval for 𝜇.

Sampling Distributions
Idea: All the data summaries are also outcomes of some random experiment.

𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2) iid

⟹ ̄𝑌 ∼ 𝑁(𝜇, 𝜎2/𝑛)
Our sample mean ̄𝑦 is an outcome of this experiment.

1.12 2020-02-12
Roadmap:

• 5 min recap
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• Recap of STAT 230
– (Strong) Law of Large #’s
– CLT

• Confidence Interval for the Normal problem with known variance
𝑌𝑖 ∼ 𝑓(𝑦𝑖; 𝜃)

𝑖 = 1, … , 𝑛 and 𝑌𝑖’s independent with 𝜃 = unknown parameter.
Likelihood Interval A 10% likelihood interval:

{𝜃 ∶ 𝑅(𝜃) ⩾ 0.1}

Notes
(i) The MLE 𝜃 is in every likelihood interval for all 𝑝 ∈ [0, 1]
(ii) Suppose 𝜃 belongs to the 100𝑝% likelihood interval, then 𝜃 belongs to the 100𝑞% likelihood interval,

where 𝑞 < 𝑝.
(iii) As 𝑛 becomes large, the intervals become narrower, for given 𝑝.
(iv) Plausibility

𝑅(𝜃) ⩾ 0.5 ⟹ very plausible
⋮

𝑅(𝜃) < 0.01 ⟹ very implausible

(v) {𝜃 ∶ 𝑅(𝜃) ⩾ 𝑝} ⟺ {𝜃 ∶ 𝑟(𝜃) ⩾ ln(𝑝)}, where 𝑟(𝜃) = log relative likelihood function
Confidence Interval

EXAMPLE 1.12.1
The STAT 231 scores are 𝑁(𝜇, 64). A sample of 25 students are taken

• ̄𝑦 = 75
• 𝑠2 = 81

Given this data, find the 95% confidence interval for 𝜇.

Central Limit Theorem
Law of Large Numbers: 𝑌1, … , 𝑌𝑛 are iid random variables with mean 𝜇 and variance 𝜎2.

̄𝑌𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

Then, ̄𝑌𝑛 → 𝜇 as 𝑛 → ∞.
CLT: If 𝑌1, … , 𝑌𝑛 are iid random variables with mean 𝜇 and variance 𝜎2, and

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑌𝑖

̄𝑌𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

Then, 𝑆𝑛 ∼ 𝑁(𝑛𝜇, 𝑛𝜎2) and ̄𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2/𝑛) approximately as 𝑛 → ∞.
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EXAMPLE 1.12.2
𝑌1, … , 𝑌𝑛 ∼ Exponential(100) with 𝑛 = 50.

𝑃 ( ̄𝑌 > 102)

̄𝑌 ∼ 𝑁(100, 1002/50)

EXAMPLE 1.12.3
𝑌 ∼ Binomial(𝑛, 𝜃). If 𝑛 is large, then

𝑌 ∼ 𝑁(𝑛𝜃, 𝑛𝜃(1 − 𝜃))

where 𝑌 = 𝑌1 + ⋯ + 𝑌𝑛 where 𝑌𝑖 ∼ Bernoulli(𝑝).

EXAMPLE 1.12.4
For any iid Normal variables, the result is true for any 𝑛 (not just large). 𝑌1, … , 𝑌𝑛 iid 𝑁(𝜇, 𝜎2), then
𝑆𝑛 ∼ 𝑁(𝑛𝜇, 𝑛𝜎2) and ̄𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2/𝑛) for all 𝑛.

Back to the Confidence Interval problem:
Steps
Step 1: Identify the sampling distribution of your estimator.
Step 2: Construct the Pivotal Quantity.
Step 3: Use the pivot to construct the coverage interval.
Step 4: Estimate this interval using your data (confidence interval).

EXAMPLE 1.12.5
𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 64) with

• 𝑛 = 25
• ̄𝑦 = 75
• 𝑠2 = 81

Objective: To construct a 95% confidence interval.
Step 1: ̂𝜇 = ̄𝑦 = 75, then

̄𝑌 ∼ 𝑁(𝜇, 64/25)
where ̄𝑌 is the sampling distribution of the sample mean.
Step 2: The pivotal quantity is given by

̄𝑌 − 𝜇
8/5 = 𝑍 ∼ 𝑁(0, 1)

Step 3:
𝑃 (−1.96 ⩽ 𝑍 ⩽ 1.96) = 0.95

⟹ 𝑃 ( ̄𝑌 − 1.96 × 8
5 ⩽ 𝜇 ⩽ ̄𝑌 + 1.96 × 8

5) = 0.95

Step 4: The confidence interval is:

[ ̄𝑦 − 1.96 × 8
5, ̄𝑦 + 1.96 × 8

5]
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Clicker Question: The sample population is always a subset of the target population.
(a) True
(b) False

1.13 2020-02-14 ♡
Roadmap:

• Confidence interval for a Normal problem with known variance
• The Q-Q-plot, and how to interpret it?
DEFINITION 1.13.1
A 100𝑝% confidence interval for 𝜃 is an interval [ℓ, 𝑢] where ℓ = ℓ(𝑦1, … , 𝑦𝑛) and 𝑢 = 𝑢(𝑦1, … , 𝑦𝑛) which
is an estimate of the random interval (coverage interval)

[ℒ(𝑌1, … , 𝑌𝑛), 𝑈(𝑌1, … , 𝑌𝑛)]

such that
𝑃 (ℒ(𝑌1, … , 𝑌𝑛) ⩽ 𝜃 ⩽ 𝑈(𝑌1, … , 𝑌𝑛)) = 𝑝

where 𝑝 is the coverage probability.

Problem: 𝑌1, … , 𝑌𝑛 are iid 𝑁(𝜇, 𝜎2)
• 𝜎2 = known
• 𝜇 = unknown parameter of interest
• a probability is pre-specified
• Sample: {𝑦1, … , 𝑦𝑛}

Objective: To construct a 95% confidence interval for 𝜇.
Step 1: Identify the sampling distribution of the estimator

• 𝜇 = attribute
• ̄𝑦 = sample mean = estimate
• ̄𝑌 = estimator = ̃𝜇
• If 𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2), then

̄𝑌 ∼ 𝑁 (𝜇, 𝜎2/𝑛)

Step 2: Construct the pivotal quantity 𝑄
DEFINITION 1.13.2
A pivotal quantity 𝑄((𝑌1, … , 𝑌𝑛); 𝜃) is a function of (𝑌1, … , 𝑌𝑛; 𝜃) (a random variable) whose proba-
bilities can be calculated without knowing what 𝜃 is

𝑃(𝑄 ⩾ 𝑎) 𝑃(𝑄 ⩽ 𝑏)

can be calculated without knowing 𝜃.
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For example, if ̄𝑌 ∼ 𝑁(𝜇, 𝜎2/𝑛), then the pivotal quantity is
̄𝑌 − 𝜇
𝜎/𝑛

and the pivotal distribution is 𝑍.
Step 3: Find the coverage interval using the pivotal distribution. For 95% we got

[ ̄𝑌 − 1.96 𝜎√𝑛, ̄𝑌 + 1.96 𝜎√𝑛]

Step 4: Estimate the coverage interval using your data.
Confidence Interval:

[ ̄𝑦 − 1.96 𝜎√𝑛, ̄𝑦 + 1.96 𝜎√𝑛]

Notes:
(i) Interpretation of a confidence interval.

Coverage: [ ̄𝑌 − 1.96 𝜎√𝑛 , ̄𝑌 + 1.96 𝜎√𝑛 ]

Confidence:[ ̄𝑦 − 1.96 𝜎√𝑛 , ̄𝑦 + 1.96 𝜎√𝑛 ]
If we did this experiment many times, approximately 95% of the intervals will contain 𝜇.

(ii) As the confidence level increases, the interval is wider.
(iii) Unrealistic example since 𝜎 is known
(iv) Can we choose the length of the interval? Yes.
The Q-Q-Plot
Model Selection
The Q-Q plot is given by (𝑦(𝛼), 𝑧(𝛼)) where

• 𝑦(𝛼) = 𝛼th quantile of your data set
• 𝑧(𝛼) = 𝛼th quantile of 𝑍 ∼ 𝑁(0, 1)

If the Q-Q plot is linear, then there is evidence of normality.
Let 𝑌 ∼ 𝑁(𝜇, 𝜎2). Show that the Q-Q plot is a straight line.

Proof of

𝑃(𝑌 ⩽ 𝑦(𝛼)) = 𝛼

𝑃 (𝑌 − 𝜇
𝜎 ⩽

𝑦(𝛼) − 𝜇
𝜎 ) = 𝛼

𝑃(𝑍 ⩽ 𝑊) = 𝛼
𝐹(𝑊) = 𝛼
⟹ 𝑊 = 𝑧(𝛼)

⟹
𝑦(𝛼) − 𝜇

𝜎 = 𝑧(𝛼)

⟹ 𝑦(𝛼) = 𝜇 + 𝜎𝑧(𝛼)

Clicker Question:
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• 𝑛 = 100
• Confidence level: 95%

We want to half the length of the interval.
̄𝑦 ± 𝑎 → ̄𝑦 ± 𝑎

2
How many more sample points do you need.
(a) 100
(b) 300

1.14 2020-02-24
Midterm review session.

1.15 2020-02-26
Roadmap:

• Recap
• Confidence interval for the Binomial problem
• How to choose the “right” sample size?

Confidence Intervals
• 𝜃 = unknown parameter
• 𝑌𝑖 ∼ 𝑓(𝑦𝑖; 𝜃) for 𝑖 = 1, … , 𝑛 with 𝑌𝑖’s independent

– 𝑓 = distribution (density) function
• Data set: {𝑦1, … , 𝑦𝑛}
• [𝑎, 𝑏] which is an estimate of the random interval [𝐴, 𝐵] which contain 𝜃 with the given probability

Step 1: Estimate 𝜃 ⟷ ̂𝜃 and find the sampling distribution of ̃𝜃.

• ̂𝜃 = estimate
• ̃𝜃 = estimator
• 𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2) where 𝜎2 is known
• ̂𝜇 = ̄𝑦 ⟷ ̂𝜃
• ̄𝑌 ⟷ ̃𝜃
• Sampling distribution: ̄𝑌 ∼ 𝑁(𝜇, 𝜎2/𝑛)

Step 2: Construct the pivotal quantity.
̄𝑌 − 𝜇

𝜎/√𝑛 = 𝑍

where 𝑍 is the pivotal distribution.
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Step 3: Construct the coverage interval. The 95% coverage interval is given by

𝑃 (−1.96 ⩽ 𝑍 ⩽ 1.96) = 0.95

𝑃 (−1.96 ⩽
̄𝑌 − 𝜇

𝜎√𝑛
⩽ 1.96) = 0.95

𝑃 ( ̄𝑌 − 1.96 𝜎√𝑛 ⩽ 𝜇 ⩽ ̄𝑌 + 1.96 𝜎√𝑛) = 0.95

Step 4: Construct the confidence interval.

[ ̄𝑦 − 1.96 𝜎√𝑛, ̄𝑦 + 1.96 𝜎√𝑛]

For the normal problem with 𝜎 = known, the confidence interval is given by

̄𝑦 ± 𝑧∗ 𝜎√𝑛

EXAMPLE 1.15.1: Binomial Distribution
In the 2020 US election, CNN does an exit poll in Wisconsin of 1200 voters.

• 56% voted for Trump
• 44% voted for Bernie Sanders

Find the 95% confidence interval for 𝜃 = proportion of votes that Trump gets.
Model: 𝑌 ∼ Binomial(1200, 𝜃) with 𝜃 = probability of voting for Trump.
Solution.
Step 1: ̂𝜃 = 𝑦/𝑛 = 0.56, ̃𝜃 = 𝑌 /𝑛 where 𝑌 ∼ 𝑁(𝑛𝜃, 𝑛𝜃(1 − 𝜃))

𝑌 − 𝑛𝜃
√𝑛𝜃(1 − 𝜃)

= 𝑍

⟹
̃𝜃 − 𝜃

√ 𝜃(1−𝜃)
𝑛

= 𝑍

However, if we use this pivotal quantity separating 𝜃 could be problematic. Thus, using version 2 of
CLT we get

̃𝜃 − 𝜃
√ ̃𝜃(1− ̃𝜃)

𝑛

= 𝑍

is a better pivotal quantity. Thus, the general confidence interval for Binomial is

̂𝜃 ± 𝑧∗√ ̂𝜃 (1 − ̂𝜃)
𝑛

⟹ 0.56 ± 1.96√0.56 × 0.44
1200 ⟺ [0.53, 0.59]

Even in the worst case scenario, Trump wins (call the election for CNN).
Note that

𝑧∗√ ̂𝜃 (1 − ̂𝜃)
𝑛

is called the margin of error.
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Suppose we want the margin of error to be ⩽ 0.03 for a 95% interval, then

𝑧∗√ ̂𝜃 (1 − ̂𝜃)
𝑛 ⩽ 0.03 ⟺ 𝑛 ⩾ ( 𝑧∗

0.03)
2

̂𝜃 (1 − ̂𝜃)

We note that ̂𝜃 = 0.5 is the maximum, so we choose 𝑛 such that

𝑛 ⩾ ( 𝑧∗

0.03)
2

(0.5)(0.5)

Thus, for the 95% confidence interval we get

𝑛 ⩾ (1.96
0.03)

2
(0.5)(0.5) ≈ 1048

1.16 2020-02-28
• 5 min recap
• The Chi-squared and the T-distribution
• Normal problem with unknown variance
• Clicker questions

Confidence intervals
Case I: Confidence interval for the mean for normal when 𝜎 is known

̄𝑦 ± 𝑧∗ 𝜎√𝑛

• ̄𝑦 = sample mean
• 𝜎 = population standard deviation
• 𝑛 = sample size
• 𝑧∗ depends on the level of confidence

– 𝑧∗ = 1.96 if confidence level is 95% for every 𝑛
Case II: Binomial Confidence

𝑌 ∼ Binomial(𝑛, 𝜃)
• 𝜃 = probability of success (unknown)

Confidence interval is given by

̂𝜃 ± 𝑧∗√ ̂𝜃 (1 − ̂𝜃)
𝑛⏟⏟⏟⏟⏟⏟⏟

margin of error

• ̂𝜃 = sample proportion
• 𝑛 = sample size

If we want the margin of error to be ⩽ ℓ, then

𝑛 ⩾ (𝑧∗

ℓ )
2

(1
4)
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The Chi-Squared Distriubtion

DEFINITION 1.16.1
𝑊 is a continuous random variable taking all non-negative values. 𝑊 is said to follow a Chi-Squared
distribution with 𝑛 degrees of freedom (d.f), denoted 𝑊 ∼ 𝜒2(𝑛), if

𝑊 = 𝑍2
1 + ⋯ + 𝑍2

𝑛

where 𝑍𝑖 ∼ 𝑁(0, 1) with 𝑍𝑖’s independent.

Properties of the Chi-Squared
(i) 𝑛 = d.f. = parameter of the Chi-squared. Once 𝑛 is specified, the d.f. is known
(ii) Density function looks like a gaussian distribution as 𝑑𝑓 → ∞
(iii) If 𝑊 ∼ 𝜒2

𝑛, then 𝐸(𝑊) = 𝑛 and 𝑉 𝑎𝑟(𝑊) = 2𝑛
Cases:

• Case I: 𝑛 = 1, then 𝑊 = 𝑍2

• Case II: 𝑛 = 2, then 𝑊 ∼ Exponential(2)
• Case III: 𝑛 is “large”, then 𝑊 ∼ 𝑁(𝑛, 2𝑛) approximately
• Case IV: 𝑛 is intermediate, then we use the table

Let (𝑋, 𝑌 ) be a random point on a Cartesian plane. Assuming 𝑋 and 𝑌 have independent 𝐺(0, 1) distributions,
the probability that a point is greater than 1.96 away from the origin is
Hint: The distance formula is 𝑥2 + 𝑦2 = 𝑑2.
(A) less than 𝟒𝟎%
(B) at least 40% but less than 60%
(C) at least 60% but less than 80%
(D) at least 80%

Why? We know that 𝐷2 ∼ Exponential(2), then we compute the following.

𝑃(𝐷 ⩾ 1.96) = 1 − 𝐹(1.96) = 1 − (1 − 1
2𝑒−1.96/2) ≈ 0.19 = 19%

The Student’s T-distribution
DEFINITION 1.16.2
𝑇 is said to follow a Student’s T-distribution with 𝑛 degrees of freedom, denoted 𝑇 ∼ 𝑡(𝑛), if

𝑇 = 𝑍
√𝑊/𝑛

where 𝑍 ∼ 𝑁(0, 1) and 𝑊 ∼ 𝜒2(𝑛).

Properties
(i) 𝑇 can take all possible values
(ii) 𝑇 is symmetric around zero
(iii) Similar to 𝑍, but with flatter tails
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(iv) As 𝑛 → +∞, then 𝑇 → 𝑍
Clicker Question:

• 𝑍 ∼ 𝑁(0, 4)
• 𝑇 ∼ 𝑡(15)
• 𝑊 ∼ 𝜒2(3)
• 𝑍, 𝑇 , 𝑊 are all independent

E[𝑊 + 𝑇 + ( 𝑍
2 )2] =

(A) 3
(B) 𝟒
(C) 5
(D) None of the above.

Why?
• E[𝑊] = 3
• E[𝑇 ] = 0 since 𝑇 is symmetric around zero for 𝑛 > 1
• Let 𝑌 = 𝑍

2 . Then,

E[𝑌 2] = V(𝑌 ) + E[𝑌 ]2 = (1
2)

2
V(𝑍) + 1

2E[𝑍] = 1
4(4) + 0 = 1

Thus, E[𝑊 + 𝑇 + 𝑌 ] = 3 + 0 + 1 = 4.

1.17 2020-03-02
Roadmap:
(i) 5 min recap
(ii) Confidence for Normal with unknown variance
(iii) Prediction Intervals
(iv) Relationship between likelihood intervals and confidence intervals
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THEOREM 1.17.1

Let 𝑌1, … , 𝑌𝑛 be iid 𝑁(𝜇, 𝜎2) where 𝜇 and 𝜎 are unknown. Let

̄𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

and
𝑆2 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2

Then,
(i) The pivotal quantity for 𝜇 is:

̄𝑌 − 𝜇
𝑆√𝑛

∼ 𝑇𝑛−1

(ii) The pivotal quantity for 𝜎2 is:
(𝑛 − 1)𝑆2

𝜎2 ∼ 𝜒2
𝑛−1

REMARK 1.17.2
(i) Shows that if we replace 𝜎 by its estimator 𝑆, then it follows a 𝑇 -distribution with (𝑛 − 1) degrees
of freedom.

EXAMPLE 1.17.3
An independent sample of 25 students are taken and STAT 231 scores are recorded.

• ̄𝑦 = 75
• 𝑠2 = 1

𝑛−1
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 = 64
(a) Find the 99% confidence interval for 𝜇.
(b) Find the 95% confidence interval for 𝜎2.
(c) Find the 99% prediction interval for 𝑌26.

Solution. We know 𝑌1, … , 𝑌25 ∼ 𝑁(𝜇, 𝜎2) where 𝑌𝑖 = STAT 231 score of the 𝑖th student.
(a) We know

̄𝑌 − 𝜇
𝑆√𝑛

∼ 𝑇24

We want a 𝑡∗ such that

𝑃(|𝑇24| ⩽ 𝑡∗) = 0.99 ⟺ 2𝐹(𝑡∗) − 1 = 0.99 ⟺ 𝑝 = 0.995 = 𝐹(𝑡∗)

Using the table we see that 𝑡∗ = 2.80. Now,

𝑃(−2.8 ⩽ 𝑇24 ⩽ 2.8) = 0.99

⟹ 𝑃 (−2.8 ⩽
̄𝑌 − 𝜇
𝑆√𝑛

⩽ 2.8) = 0.99

⟹ 𝑃 ( ̄𝑌 − 2.8 𝑆√𝑛 ⩽ 𝜇 ⩽ ̄𝑌 + 2.8 𝑆√𝑛) = 0.99

Thus, the 99% confidence interval for 𝜇 is:

̄𝑦 ± 2.8 𝑠√𝑛 ⟹ [62.2, 87.8]
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(b) We know
(𝑛 − 1)𝑆2

𝜎2 ∼ 𝜒2
24

We want any value 𝑎 and 𝑏 such that

𝑃(𝑎 ⩽ 𝜒2
24 ⩽ 𝑏) = 0.95

We choose the symmetric solution with 𝑎 = 0.025 → 13.120 and 𝑏 = 0.975 → 40.646. Now,

𝑃 (13.120 ⩽ 𝜒2
24 ⩽ 40.646) = 0.95

⟹ 𝑃 (13.120 ⩽ (𝑛 − 1)𝑆2

𝜎2 ⩽ 40.646) = 0.95

⟹ 𝑃 ((𝑛 − 1)𝑆2

40.646 ⩽ 𝜎2 ⩽ (𝑛 − 1)𝑆2

13.120 ) = 0.95

Thus, the 95% confidence interval for 𝜎2 is:

[(𝑛 − 1)𝑠2

40.646 , (𝑛 − 1)𝑠2

13.120 ] ⟹ [37.79, 117.07]

(c) Prediction interval.
𝑌26 ∼ 𝑁(𝜇, 𝜎2)

̄𝑌 ∼ 𝑁(𝜇, 𝜎2/𝑛)

⟹ 𝑌26 − ̄𝑌 ∼ 𝑁 (0, 𝜎2 (1 + 1
𝑛))

Therefore, the pivotal quantity is:
𝑌26 − ̄𝑌

𝜎√1 + 1
𝑛

= 𝑍 ∼ 𝑁(0, 1)

we replace 𝜎 by its estimator and get
𝑌26 − ̄𝑌

𝑆√1 + 1
𝑛

∼ 𝑇24

Thus,
𝑃(|𝑇24| ⩽ 2.8) = 0.99

yields the general 99% prediction interval:

̄𝑦 ± 𝑡∗𝑠√1 + 1
𝑛

We make the following remark:
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REMARK 1.17.4

Let 𝑌1, … , 𝑌𝑛 be iid 𝑁(𝜇, 𝜎2). Then,
(i) The general confidence interval for 𝜇 is:

̄𝑦 ± 𝑧∗ 𝜎√𝑛 if 𝜎 is known

̄𝑦 ± 𝑡∗ 𝑠√𝑛 if 𝜎 is unknown

(ii) The general confidence interval for 𝜎2 is:

[(𝑛 − 1)𝑠2

𝑏 , (𝑛 − 1)𝑠2

𝑎 ]

where 𝑎 and 𝑏 come from the 𝜒2
𝑛−1 table and 𝑏 − 𝑎 = RHS.

(iii) The general prediction interval for 𝑌𝑛+1 is:

̄𝑦 ± 𝑡∗𝑠√1 + 1
𝑛

THEOREM 1.17.5
As 𝑛 → ∞,

𝛬(𝜃) = −2 ln[ℒ(𝜃)
ℒ( ̃𝜃)

] ∼ 𝜒2
1

where ̃𝜃 is the maximum likelihood estimator. We call the random variable 𝛬(𝜃) the likelihood ratio
statistic.

EXAMPLE 1.17.6
Suppose 𝑛 is large, and we have a 10% likelihood interval. What is the corresponding coverage proba-
bility?
Solution. 10% likelihood interval ⟹ 𝑅(𝜃) ⩾ 0.1

⟹ ℒ(𝜃)
ℒ( ̂𝜃)

⩾ 0.1

⟹ −2 ln[ℒ(𝜃)
ℒ( ̂𝜃)

] ⩽ −2 ln(0.1)

⟹ 𝜆(𝜃) ⩽ −2 ln(0.1)
Thus, the corresponding coverage:

𝑃 (𝛬(𝜃) ⩽ −2 ln(0.1)) = 𝑃(𝑍2 ⩽ −2 ln(0.1))
= 𝑃(|𝑍| ⩽ √−2 ln(0.1))
≈ 97%
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1.18 2020-03-04
DEFINITION 1.18.1

An estimator ̃𝜃 is called unbiased for 𝜃 if
𝐸( ̃𝜃) = 𝜃

EXAMPLE 1.18.2

Let 𝑊 = (𝑛−1)𝑆2

𝜎2 . Prove 𝑆2 is an unbiased estimator for 𝜎2.
Solution.

𝐸(𝑊) = 𝑛 − 1

⟹ 𝐸 ((𝑛 − 1)𝑆2

𝜎2 ) = 𝑛 − 1

⟹ 𝑛 − 1
𝜎2 𝐸(𝑆2) = 𝑛 − 1

⟹ 𝐸(𝑆2) = 𝜎2

Thus, 𝑆2 is an unbiased estimator for 𝜎2 by definition.

Other Confidence Intervals
Poisson Suppose 𝑌1, … , 𝑌𝑛 ∼ Poisson(𝜇) are independent and 𝑛 is large. Find the 95% confidence inter-
val.

𝑌 ∼ 𝑁(𝜇, 𝜎2 = 𝜇/𝑛)
Find the pivotal quantity now.
Exponential Suppose 𝑌1, … , 𝑌𝑛 ∼ Exponential(𝜃) are independent and 𝑛 is small.

THEOREM 1.18.3
If 𝑌 ∼ Exponential(𝜃), then

2𝑌
𝜃 ∼ Exponential(2)

If 𝑊𝑖 = 2𝑌𝑖/𝜃, then
𝑛

∑
𝑖=1

𝑊𝑖 ∼ 𝜒2
2𝑛

Proof of
Let 𝐹𝑊 (𝑤) be the cumulative distribution function of 𝑊 . Then,

𝐹𝑊 (𝑤) = 𝑃(𝑊 ⩽ 𝑤)

= 𝑃 (2𝑌
𝜃 ⩽ 𝑤)

= 𝑃 (𝑌 ⩽ 𝑤𝜃
2 )

= 1 − 𝑒− 𝑤𝜃/2
𝜃

= 1 − 𝑒−𝑤/2

Therefore,
𝑓(𝑤) = 1

2𝑒−𝑤/2
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Using this theorem, we can find the confidence interval for 𝜃.
𝑃 (𝑎 ⩽ 𝜒2

2𝑛 ⩽ 𝑏) = 0.95

⟹ 𝑃 (𝑎 ⩽
𝑛

∑
𝑖=1

𝑊𝑖 ⩽ 𝑏) = 0.95

⟹ 𝑃 (𝑎 ⩽
𝑛

∑
𝑖=1

2𝑌𝑖
𝜃 ⩽ 𝑏) = 0.95

⟹ 𝑃 (𝑎 ⩽ 2
𝜃

𝑛
∑
𝑖=1

𝑌𝑖 ⩽ 𝑏) = 0.95

yields

⎡
⎢⎢
⎣

2
𝑛

∑
𝑖=1

𝑌𝑖

𝑏 ,
2

𝑛
∑
𝑖=1

𝑌𝑖

𝑎
⎤
⎥⎥
⎦

where 𝑎 and 𝑏 are from the 𝜒2 table.
THEOREM 1.18.4
If we have a 𝑝% coverage interval with 𝑍 as a pivot, and 𝑛 is large, then the corresponding likelihood is
given by

exp [−(𝑧∗)2/2]

EXAMPLE 1.18.5
If 𝑝 = 0.95 and 𝑧∗ = 1.96, then the corresponding likelihood is:

exp [−(1.96)2/2] ≈ 0.15

1.19 2020-03-06
Roadmap:
(i) Recap (excluded from these notes)
(ii) Testing of hypotheses (Null vs Alternate) and (Two-sided vs One-sided tests)
(iii) Clicker
Hypothesis Testing

DEFINITION 1.19.1
A hypothesis is a statement about the (parameters of) population. There are two (competing) hypothe-
ses.
Null Hypothesis 𝐻0: current belief, conventional wisdom
Alternate Hypothesis 𝐻1: challenger to the conventional wisdom

EXAMPLE 1.19.2
Suppose we want to test whether a coin is biased. We flip the coin 100 times and get 52 heads. Let
𝜃 = 𝑃 (𝐻)

• 𝐻0: 𝜃 = 1
2

• 𝐻1: 𝜃 ≠ 1
2
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Approach 𝑝-value approach.

DEFINITION 1.19.3
The 𝑝-value: is the probability of observing my evidence (or worse) under the assumption that 𝐻0 is
true. The lower the 𝑝-value, the strong is the evidence against 𝐻0.

Notes:
• 𝐻0 and 𝐻1 are not treated symmetrically.
• Unless there is overwhelming evidence (“beyond a reasonable doubt”) against 𝐻 − 0, we stick with it.

The burden is on the challenger.
𝐻0 is true 𝐻1 is true

Reject 𝐻0 (convict) 𝑋1 ✓
Do not reject 𝐻0 ✓ 𝑋2

where 𝑋1 is a Type I error and 𝑋2 is a Type II error.
Two-sided vs One-sided tests:

• 𝐻0: 𝜃 = 1
6

• 𝐻1: 𝜃 < 1
6

Clicker Question The 𝑝-value = 𝑃(𝐻0 is true).
(a) True
(b) False

1.20 2020-03-09
Roadmap:
(i) Binomial testing
(ii) Review for the midterm (excluded from these notes)
DEFINITION 1.20.1
𝑝-value: Probability of observing as extreme an observation of your data, given the null hypothesis is
true.

DEFINITION 1.20.2
A test statistic (discrepancy measure) is a random variable that measures the level of disagreement of
your data with the null hypothesis. Typically, it satisfies the following properties:
(i) 𝐷 ⩾ 0
(ii) 𝐷 = 0 ⟹ best news for 𝐻0
(iii) High values of 𝐷 ⟹ bad news for 𝐻0
(iv) Probabilities can be calculated if 𝐻0 is true

Steps for a Statistical test
Step 1: Construct the test-statistic 𝐷



CHAPTER 1. CHAPTERS 1-5 38

EXAMPLE 1.20.3
Test whether a coin is fair (against the two sided alternative). Let 𝑛 = 100 and 𝑦 = 52 heads.

• 𝐻0: 𝜃 = 1
2

• 𝐻1: 𝜃 ≠ 1
2

where 𝜃 = 𝑃(𝐻).
Model: 𝑌 ∼ Binomial(100, 𝜃).

𝐷 = |𝑌 − 50|
as it satisfies (i)-(iv).

Step 2: Find 𝑑 from your data set.

𝑝-value = 𝑃(𝐷 ⩾ 𝑑; 𝐻0 is true)

Step 3: Make conclusions based on your p-value
For our Binomial problem,

𝐷 = |𝑌 − 50| ⟹ 𝑑 = |52 − 50| = 2
Thus,

𝑝-value = 𝑃(|𝑌 − 50| ⩾ 2)
but this is difficult to calculate. For 𝑛 large enough, we can use

𝐷 = ∣ 𝑌 − 𝑛𝜃
√𝑛𝜃(1 − 𝜃)

∣

as a possible test statistic.

1.21 2020-03-11
Roadmap:
(i) Testing for normal problems
(ii) How to test for a “bias” of a scale
(iii) One-sided tests
(iv) Relationship between C.I and H.T
(v) Other distributions

Problem: 𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2) iid.
• 𝐻0: 𝜇 = 𝜇0

• 𝐻1: 𝜇 ≠ 𝜇0

Steps involved:
(i) Construct the Discrepancy measure 𝐷 (satisfying the properties), this measures how much the data

disagrees with 𝐻0

(ii) Calculate the value of 𝐷 from your sample (𝑑)
(iii) 𝑝-value = 𝑃(𝐷 ⩾ 𝑑; 𝐻0 is true)
(iv) Draw appropriate conclusions based on your 𝑝-value
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EXAMPLE 1.21.1
The STAT 231 scores are normally distributed with mean 𝜇 and variance 𝜎2 = 49.

• 𝐻0: 𝜇 = 75
• 𝐻1: 𝜇 ≠ 75

A random sample of 25 students are taken ̄𝑦 = 72. Find the 𝑝-value.
Solution. From Chapter 4 we know that

̄𝑌 − 𝜇
𝜎√𝑛

= 𝑍 ∼ 𝑁(0, 1)

𝐷 = ∣
̄𝑌 − 𝜇0

𝜎√𝑛
∣

where we can see that 𝐷 is a legitimate test statistic as it satisfies all the required properties since:
1. 𝐷 ⩾ 0 for all 𝑑
2. 𝐷 = 0 ⟹ best news for 𝐻0
3. High values of 𝐷 ⟹ bad news for 𝐻0
4. Probabilities can be calculated if 𝐻0 is true

Thus, we have

𝑑 = ∣ ̄𝑦 − 𝜇0
𝜎√𝑛

∣ = ∣72 − 75
7√
5

∣ = 15
7 = 2.14

𝑝-value = 𝑃(𝐷 ⩾ 𝑑)
= 𝑃(|𝑍| ⩾ 2.14)
< 0.05

Evidence against 𝐻0.

EXAMPLE 1.21.2
UW brochure claims that the average starting salary of UW graduates is $60000/year. We assume
normality. We want to test this claim. Let ̄𝑦 = 58000 and 𝑠 = 5000. What should you conclude?
Solution.

• 𝐻0: 𝜇 = 60000
• 𝐻1: 𝜇 ≠ 60000

𝐷 = ∣
̄𝑌 − 𝜇0

𝑆√𝑛
∣

where all the properties of 𝐷 are satisfied.

𝑑 = ∣ ̄𝑦 − 60000
5000√

25
∣ = 2

𝑝-value = 𝑃(𝐷 ⩾ 𝑑)
= 𝑃(|𝑇24| ⩾ 2)

The 𝑝-value for this test is between 5% and 10%. Weak evidence against 𝐻0.
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1.22 2020-03-13
Roadmap:
(i) Recap and the relationship between Confidence and Hypothesis
(ii) Example: Bias Testing
(iii) Testing for variance (Normal)
(iv) What if we don’t know how to construct a Test-Statistic?
EXAMPLE 1.22.1
𝑌1, … 𝑌𝑛 iid 𝑁(𝜇, 𝜎2)

• 𝜎2 = known
• 𝜇 = unknown
• Sample: {𝑦1, … , 𝑦𝑛}
• ̄𝑦 = sample mean
• 𝐻0: 𝜇 = 𝜇0 where 𝜇0 is given
• 𝐻1: 𝜇 ≠ 𝜇0

𝐷 = ∣
̄𝑌 − 𝜇0

𝜎√𝑛
∣ → Test-Statistic (r.v.)

𝑑 = ∣ ̄𝑦 − 𝜇0
𝜎√𝑛

∣ → Value of the Test-Statistic

𝑝-value = 𝑃(𝐷 ⩾ 𝑑) assuming 𝐻0 is true
= 𝑃(|𝑍| ⩾ 𝑑) 𝑍 ∼ 𝑁(0, 1)

Question: Suppose the 𝑝-value for the test > 0.05 if and only if 𝜇0 belongs in the 95% confidence interval for
𝜇?
YES.
Suppose 𝜇0 is in the 95% confidence interval for 𝜇, i.e.

̄𝑦 ± 1.96 𝜎√𝑛

𝜇0 ⩽ ̄𝑦 + 1.96 𝜎√𝑛
𝜇0 ⩾ ̄𝑦 − 1.96 𝜎√𝑛

These two equations yield

𝑑 = ∣ ̄𝑦 − 𝜇0
𝜎√𝑛

∣ ⩽ 1.96

𝑝-value = 𝑃(|𝑍| ⩾ 𝑑) > 0.05

General result (assuming same pivot)
𝑝-value of a test 𝐻0: 𝜃 = 𝜃0 vs 𝐻1: 𝜃 ≠ 𝜃0 is more than 𝑞%, then 𝜃0 belongs to the 100(1 − 𝑞)% confidence
interval and vice versa.

EXAMPLE 1.22.2: Bias
A 10 kg weight is weighed 20 times (𝑦1, … , 𝑦𝑛).

• ̄𝑦 = 10.5
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• 𝑠 = 0.4
• 𝐻0: The scale is unbiased
• 𝐻1: The scale is biased

If the scale was unbiased,
𝑌1, … , 𝑌𝑛 ∼ 𝑁(10, 𝜎2)

If the scale was biased,
𝑌1, … , 𝑌𝑛 ∼ 𝑁(10 + 𝛿, 𝜎2)

• 𝐻0: 𝛿 = 0 (unbiased)
• 𝐻1: 𝛿 ≠ 0 (biased)

is equivalent to
• 𝐻0: 𝜇 = 10
• 𝐻1: 𝜇 ≠ 10

Test-statistic:
𝐷 = ∣

̄𝑌 − 10
𝑆√𝑛

∣

Compute 𝑑.

𝑑 = ∣ ̄𝑦 − 10
𝑠√𝑛

∣ = ∣10.5 − 10
0.4√

20
∣ = 5.59017

𝑝-value = 𝑃(𝐷 ⩾ 𝑑)
= 𝑃(|𝑇19| ⩾ 5.59)
= 1 − 𝑃(|𝑇19| ⩽ 5.59)
= 1 − [2𝑃(𝑇19 ⩽ 5.59) − 1]
≈ 1 − (2 − 1)
= 0

Very strong evidence against 𝐻0.

EXAMPLE 1.22.3: Draw Conclusions
𝑌1, … , 𝑌𝑛 = co-op salaries. 𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2)

• 𝐻0: 𝜇 = 3000
• 𝐻1: 𝜇 < 3000 (𝜇 ≠ 3000)

𝐷 = ∣
̄𝑌 − 𝜇0

𝑆√𝑛
∣

𝐷 = {
0 ̄𝑌 > 𝜇0

̄𝑌 −𝜇0
𝑆√𝑛

̄𝑌 < 𝜇0

If 𝑛 is large, then
𝑌1, … , 𝑌𝑛 ∼ 𝑓(𝑦𝑖; 𝜃)

• 𝐻0: 𝜃 = 𝜃0

• 𝐻1: 𝜃 ≠ 𝜃0

𝛬(𝜃) = −2 ln[ℒ(𝜃0)
ℒ( ̃𝜃)

]
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where 𝛬 satisfies all the properties of 𝐷. Also,

𝜆(𝜃) = −2 ln[ℒ(𝜃0)
ℒ( ̂𝜃)

] = −2 ln [𝑅(𝜃0)]

and
𝑝-value = 𝑃(𝛬 ⩾ 𝜆) = 𝑃(𝑍2 ⩾ 𝜆)
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Online Lectures

2.1 2020-03-16: Testing for Variances
Roadmap:
(i) General info
(ii) Testing for variance for Normal
(iii) An example
The general problem:

• 𝑌1, … , 𝑌𝑛 ∼ 𝑁(𝜇, 𝜎2) iid where 𝜇 and 𝜎 are both unknown.
• Sample: {𝑦1, … , 𝑦𝑛}
• 𝐻0: 𝜎2 = 𝜎2

0 vs two sided alternative.
(i) Test statistic? Problem
(ii) Convention?

The pivot is:
𝑈 = (𝑛 − 1)𝑆2

𝜎2
0

∼ 𝜒2
𝑛−1

can we use this as our test statistic? We will calculate

𝑢 = (𝑛 − 1)𝑠2

𝜎2
0

We want to compare 𝑢 to the median of 𝜒2
𝑛−1:

• If 𝑢 > median, then 𝑝-value = 2𝑃(𝑈 ⩾ 𝑢).
• If 𝑢 < median, then 𝑝-value = 2𝑃(𝑈 ⩽ 𝑢).
EXAMPLE 2.1.1: TODO

• Normal population: {𝑦1, … , 𝑦𝑛}
• 𝑛 = 20
•

𝑛
∑
𝑖=1

𝑦𝑖 = 888.1

•
𝑛

∑
𝑖=1

𝑦2
𝑖 = 39545.03

43
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• 𝐻0: 𝜎 = 𝜎0 = 2 ⟺ 𝜎2 = 𝜎2
0 = 4

• 𝐻1: 𝜎 ≠ 𝜎0 = 2 ⟺ 𝜎2 ≠ 𝜎2
0 = 4

What is the 𝑝-value? We know

𝑠2 = 1
𝑛 − 1 [

𝑛
∑
𝑖=1

𝑦2
𝑖 − 𝑛 ̄𝑦2] = 1

19 [(39545.03) − (20) (888.1
20 )] = 5.7342

Compute 𝑢:
𝑢 = (𝑛 − 1)𝑠2

𝜎2
0

= (19)(5.7342)
4 = 27.24

We need to determine if 𝑢 is to the right or left of the median 𝜒2
19. We know it will be to the right

since the mean of 𝜒2
19 is 19. 𝜒2 is right-skewed, so the mean must be bigger than the median, thus the

median must be less than 19. Therefore, 𝑢 > median. Alternatively, we can use the table and look at
𝑝 = 0.5, 𝑑𝑓 = 19 → 18.338 < 𝑢.

𝑝-value = 2𝑃(𝑈 ⩾ 𝑢)
= 2𝑃(𝑈 ⩾ 27.24)
= 2𝑃(𝜒2

19 ⩾ 27.24)

We see that 27.24 falls between 𝑝 = 0.9 and 𝑝 = 0.95. The area to the right of 𝑝 = 0.9 is 10% and the
area to the right of 𝑝 = 0.95 is 5%. Thus, 2𝑃(5%and %10) = 10% and20%, which implies 𝑝 > 0.1 and
we conclude there is no evidence against null-hypothesis.

2.2 2020-03-18: Likelihood Ratio Test Statistic Example
Roadmap:
(i) 5 min recap
(ii) LTRS for large 𝑛
(iii) An example
(i) 5 min recap
𝑌1, … , 𝑌𝑛 iid ∼ 𝑁(𝜇, 𝜎2)

• 𝐻0: 𝜎2 = 𝜎2
0

• 𝑈 = (𝑛−1)𝑆2

𝜎2
0

∼ 𝜒2
𝑛−1

We calculated the 𝑝-value:
𝑢 = (𝑛 − 1)𝑠2

𝜎2
0

• If 𝑢 > median 𝜒2
𝑛−1 ⟹ 𝑝-value = 2𝑃(𝑈 ⩾ 𝑢) (twice right tail)

• If 𝑢 < median 𝜒2
𝑛−1 ⟹ 𝑝-value = 2𝑃(𝑈 ⩽ 𝑢) (twice left tail)

Exercise For TODO
• Construct the 95% confidence interval for 𝜎2.
• Check if 𝜎2

0(4) ∈ 95% confidence interval.
We already know that 𝐻0: 𝜎2 = 4 yields a 𝑝-value > 0.1, so it should be in the 90% confidence interval ⟹
it’s in the 95% confidence interval.
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(ii) LTRS for large 𝑛
𝑌1, … , 𝑌𝑛 iid 𝑓(𝑦𝑖; 𝜃) with 𝑛 large.

• Sample: {𝑦1, … , 𝑦𝑛}
• 𝜃 = unknown parameter
• 𝐻0: 𝜃 = 𝜃0

• 𝐻1: 𝜃 ≠ 𝜃0

Step 1: Test statistic:

𝛬(𝜃) = −2 ln[ℒ(𝜃)
ℒ( ̃𝜃)

]

If 𝐻0 is true:

𝛬(𝜃0) = −2 ln[ℒ(𝜃0)
ℒ( ̃𝜃)

] ∼ 𝜒2
1

Step 2: Calculate 𝜆(𝜃0)

𝜆(𝜃0) = −2 ln[ℒ(𝜃0)
ℒ( ̂𝜃)

] = −2 ln [𝑅(𝜃0)]

𝑝-value = 𝑃(𝛬 ⩾ 𝜆)
= 𝑃(𝑍2 ⩾ 𝜆)
= 1 − 𝑃(|𝑍| ⩽

√
𝜆)

(iii) An example
EXAMPLE 2.2.1
Suppose 𝑌1, … , 𝑌𝑛 ∼ 𝑓(𝑦𝑖; 𝜃) iid where

𝑓(𝑦, 𝜃) = 2𝑦
𝜃 𝑒−𝑦2/𝜃

• 𝑛 = 20
•

𝑛
∑
𝑖=1

𝑦2
𝑖 = 72

We want to test 𝐻0: 𝜃 = 5 (two sided alternative).
• ̂𝜃 = 1

𝑛
𝑛

∑
𝑖=1

𝑦𝑖 = 1
20 (72) = 3.6

• 𝑅(𝜃0) = ( ̂𝜃
𝜃0

)
𝑛

𝑒(1− ̂𝜃
𝜃0 )𝑛 = 0.379052

• 𝜆(𝜃0) = −2 ln [𝑅(𝜃0)] = 1.94016

𝑝-value = 𝑃(𝛬 ⩾ 𝜆)
= 𝑃(𝑍2 ⩾ 1.94016)
= 1 − [2𝑃(𝑍 ⩽

√
1.94016) − 1]

= 1 − [2(0.97381) − 1]
= 0.16452
≈ 16.5%

Thus, no evidence against null-hypothesis (𝐻0).



CHAPTER 2. ONLINE LECTURES 46

A few final points:
(i) Careful about the previous example:

• 𝑛 = 20 is not large
(ii) 𝜆 and the relationship with 𝑅:

• high values of 𝜆 ⟹ low values of 𝑅(𝜃0)
(iii) Next video
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